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METHOD OP COMPUTING FLUID MOTION IN TWO-DIMENSIONAL CARTESIAN OR 

CYLINDRICAL COORDINATES BY FOLLOWING LAGRANGIAN ENERGY CELLS 

by 

Patrick J.  Blewett 

ABSTRACT 

It is conjectured that for some physical flow problems there may 
be an advantage in following energy exactly as one follows mass elements 
in the conventional Lagrangian formulation of fluid dynamics. Essential- 
ly, the argument is a generalization to two dimensions of an idea due to 
Enig who derived the equations for one-dimensional slab geometry. The 
equations are derived both differentially and integrally from the Eulerian 
form, and they are compared with the conventional Lagrangian equations. 

NOTATION 

specific internal energy 

total energy in Lagrangian energy cell, p i|r V 

Jacobian of transformation, r.z - r z 
5 Tl    Tl 5 

(r/?)a J 

pressure 

radial coordinate 

time 

u radial speed 

V volume 

v velocity vector, (u,0,w) 

w axial speed 

z axial coordinate 

a 1 or 0, for cylindrical or Cartesian plane 
geometries, respectively 

Ti Lagrangian mass or energy coordinate, z(§,r|,0) 

5 Lagrangian mass or energy coordinate, r(§,r],0) 

o density 

ifi total specific energy, J?(u +w )+e 

o subscript denoting initial values 

A letter subscript denotes partial differentiation. 

This report derives and examines the equations 

governing the motion of energy elements in cylindri- 

cal coordinates where symmetry in 6 is assumed. 

This is analogous to the conventional Lagrangian 

formulation of mass motion fromEuler's fundamental 

equations. For physical problems involving no 

energy sources, such as impact problems, or for cer- 

tain problems wherein a time is reached at which 

there is no further release of energy, it is conjec- 

tured that there may be some advantage in following 

the flow of energy in addition to mass flow. Compu- 

tations of impact problems in two-dimensional fluid 

mechanics in the conventional Lagrangian formulation 

often encounter difficulties of mesh distortion, 

partly because of the impenetrability of mass.  Be- 

cause energy, however, can flow across a collision 

surface, it might be possible to compute its motion 

more smoothly by following such elements. Enig de- 

rived the equations for one-dimensional slab geometry 

and computed from them the problem of an infinite 

gas moving toward an infinitely rigid wall. He 

achieved good agreement with the analytic solution. 

To my knowledge, Enig's is the only application of 

this method. 

We will derive the equations differentially, 

leaving most of the mathematical details to the 

appendixes, and will interpret the resulting equa- 

tions both differentially and integrally. 

We start with Euler's formulation of the equa- 

tions of conservation of mass, energy, and momentum, 

and attempt to keep cylindrical coordinates separate 

from two-dimensional Cartesian coordinates 



0  + V.DV = 0, mass, 

(o']i)t + v-[(o'(i+P)v] = 0,   energy, 

(1) 

(2) 

(DU), + T7-(DUV) + P = 0,  r momentum,   (3) 

(DW) + V'(pwv) + P = 0,  z momentum,   (k) 

Dt + - DU + (ou)r + (ov)z = 0, (5) 

h riDZ?t+0§zt-(Dw)J + ZT,[-nr5t-D?V(ou); 

H !iVVt'(wilJ* °- 
This equation can then be put in the more meaningful 

form, 

(o'!r)t + 7 (D4+P)U + [(o!+P)u]r+[(Dt+PHz = 0,        '(oJ)t 
+ "* ~ = r?[o( zt"W^Ti " ^^V"^": 

(ou)t + | DU
2
 + (Du

2+P)r + (DUW)Z = 0, 

(ow)t + j  pwu + (Dwu)r + (ow
2+P)z = 0. 

In the conventional way,  we now let 

r - r(*,n,t), 

z - z(5,n,t). 

(6) 

(7) 

(8) 

(9) 

(10) 

Under this transformation,  the partial-derivative 

operators transform as 

3r     J VZT] a?      Z? V ' (11) 

-K'5fe-rr,||)' (12) 

It - It+ j[(rtzrr?zt)fe+ ^w^M'(13) 

a_ 
5z 

where 

J = r.z - r z . (iM 

Equations (11) through (13) are derived in Appendix 

A. 

Applying Eqs. (11) through (13) on Eq. (5), we 

have 

PtJ + (rtzrr;zt)oTi + (rnVrtz>§ + <* 

+ ^(o")^ - z-J-oU\ + T^DV\ ' Tr^n'wh= °" 

Into the above equation we substitute 

DtJ =  (oJ)t -  o(r?ZTit+r§tz^rTiz?t-rTitz§)   , 

and collect terms in r.,  r  ,  z  ,  z_.    The result is 
S        Tl        Tl ? 

+ zr)[o(rt-u)]F - zr[o(rt-u) ;i5) 

We note here that Eq.   (15)  is identically satisfied 

by 

DJ=  (|)a OJS.TI), 

rt= u, 

zt = w, 

(16) 

(IT) 

(18) 

because the left-hand side of Eq. (15) with the aid 

of Eq. (16) is 

/ T\    T DU      ,Ksa.-V     %  V  ,   /^o- u 
(pJ)t + «J - = oo a(£)  - ^>t + ano(-) -, 

r 

(&j)t + aJ^= -ooa(|)ai(rt-u). 

Now looking back at Eqs. (6), (7), and (8), we see 

that their forms are similar to Eq. (5), namely, a 

term differentiated with respect to t, a term in a 

due to radial motion in cylindrical coordinates, and 

then two terms differentiated, respectively, with r 

and z. We leave to Appendix B the repetitive alge- 

bra of applying Eqs. (11) through (13) to Eqs. (6) 

through (8) to derive equations like Eq. (15). With 

Eqs. (15) the results are 

(DJ)t + aJ ^ =  r?[0(zt-w)]ri - rTi[p(zt-w)]? 

+ z [p(r -u)]ff - z [D(r -u)]  mass, (19) Tl    t    5    5    t    n 

(pJ'lf)t + aj(o>!r+P)^ = r?[p<i(zt-w)-Pw] -rTi[D![f(zt-w)-Pw]i. 

+z [p*(*V-u)-Pu]--z [otfr.-u)-Pu]  energy, (20) 



(oJu)t + aJ 
£j-= r§[pu(zt-w)] -r [pu(zt-w)] 

+ z [pu(r -u)-p] -z [pu(r,-u)-P]   r momentum, 
T]   T.   - S S   t    T] 

(21) 

and 

(oJw)t + oJ £pi= r?[pw(zt-w)-p] -r [pw(zt-w)-p] 

- z [pw(r -u)]tr-zir[pw(r -u)]  z momentum.    (22) 

Let us consider what has been done. We started with 

the four Eulerian equations, (5) through (8), in the 

five dependent variables, p,u, w, P, and e, and the 

three independent variables, r, z, and t. We assume 

that we also have an equation of state relating p, 

P, and e so that we have five equations in five un- 

knowns. With the transformations, Eqs. (9) and (10), 

We have created two more dependent variables, r and 

z;  hence, Eqs. (19) through (22), complemented with 

an equation of state, constitute five equations in 

seven unknowns in the new independent variables §, 

T|, and t. In the conventional Lagrangian formula- 

tion, Eq. (19) is identically satisfied by replac- 

ing it with Eqs. (l6), (17), and (18). Thus, we 

have seven equations in the seven unknowns, r, z, 

u, w, n, P, and e. With the aid of Eqs. (16) and 

(17), we note that 

(oJSZS)t + oJo0 \ =   (|)aDo0t ' a(|)a°o ¥rt-U^> 

(oJ0)t + aJD0H= (S)* DJt  , (23) 

where 0 is any dependent variable.  Thus with Eqs. 

(23), (17), and (18), Eqs. (20), (21), and (22) 

simplify to: 

»ok4* H - ^^W^VV^YVH,1 

energy,     (2k) 

0    u = (p)a[-z P.+z' P ] r momentum,    (25) 
O      Ti S     "  S  b  Tl 

and 

0 w = (-p)a[-r P +r P.] z momentum.    (26) 
o t   ^    5 n n s 

The above three equations are recognized as the con- 

ventional Lagrangian formulas in two dimensions. 

To follow energy elements, instead of mass 

elements, let us ask what are the consequences of 

satisfying Eq. (20) identically. To accomplish this, 

let 

PJ* = P0(§,T!)*o(?,Ti)(|)
a 

Then, 

(pJ*)t = ■p lit Mo o 
a(^ T > 

(27) 

(28) 

and the left-hand side of Eq. (20) becomes 

_p f a(I)« i[r -u- £f| . (29) Mo 'o yrJ    rL t   p\ifj v 7/ 

Examining the right-hand side of Eq. (20), we see 

that it also will equal zero if 

r - u 
t 

Pu 
P'ir ' 

Pw 
P* 

(30) 

(31) 

Hence energy flows with speeds (1+ p/pijf)u and 

(1+ P/pi[r)w in the radial and axial directions, re- 

spectively. It should be emphasized that all our 

dependent variables except r and z retain their same 

physical meaning as in the conventional Lagrangian 

formulation; specifically, u and w are still the 

mass particle speeds. However, through their de- 

pendence on the new independent variables 5 and -n, 

they are correlated with the initial position of a 

given energy element. For impact problems in which 

one can assume that initially there is only kinetic 

energy of some projectile or moving medium, the 

initial position of a given energy element will be 

the same as the initial position of the correspond- 

ing mass element. 

To complete the formulation of our problem, we 

must now ask what are the consequences of applying 

Eqs. (27), (30), and (31), to Eqs. (19), (21), and 

(22).  Because 

(pj)t = 'Ji~1[(pJ'J/)t-cJtt] , 

and with Eq. (28) the left-hand side of Eq. (19) 

becomes 



p„* 
L o o vr'  r   *  vr' *t  o*ovr' rj ' 

,-1 
0 .1. (I)a[!i + 2(r -u)l . 
o or' L ijf  rv t  'J 

Then substituting Eqs. (30) and (31) into the above 

and the right-hand side of Eq. (19), we have 

ro'Ji 
o'o r L 

-r (Pwi,~ ). + z (PuJi" ) - z„(Pu>li" )   mass 

(32) 

In Appendix C we repeat this procedure for Eqs. (21) 

and (22). The results are 

where V is the moving volume element enclosed by the 

moving surface, S. By convention, dS points outward 

from the given energy element. The right-hand side 

is then the mass flux into a particular energy element; 

thus, the operator, d/dt, on the left-hand side im- 

plies following the given energy element in the fixed 

frame.  In other words, Eqs. (30) and (31) imply that 

the rate of growth of the volume of a given energy 

element, i.e., 

J(|)a , 

is such that 

J r-^^. :*) 

TO'lr J 'II 

+ z tPu2-!f"
1-P]^-zc[Pu

2'iJ"
1-P] , r momentum,      (33) 

We think of the left-hand side of Eq. (36) as ex- 

pressed in Lagrangian energy coordinates, (§,r|,t), 

and of the right-hand side as a function of (r,z,t). 

Further, the operator, d/dt, in Eq. (35) is 

■oVf^'V Puw~| 
,2j 

.2, -1 2, -1 rP[Pw ;|r  -P] -r [Pw .J,  -P] tt=(ft>r,z+(1+^' (37) 

■n n 

+z [Puw^j  ],.-z.[Puw!!/  ]  ,  z momentum.        (3^) 
"H      ^  ^      ri 

and the transformation of this operator to Lagrangian 

energy coordinates is simply 

Because Eq. (32) originally came from the mass 

conservation equation in Eulerian form, it should 

express mass conservation as one follows in time a 

particular energy element or cell, which is identi- 

fied by its original position through (§,Ti). To 

show that this is indeed the case, we will rederive 

Eq. (32) integrally with the hope that its physical 

content will be more plausible. Equations (30) and 

(31) tell us that energy moves with radial and axial 

speeds, respectively, as 

dt - ^t;§,n • (38) 

Equations (36) and (37) are derived in Appendix D. 

In the conventional Lagrangian coordinates, wherein 

mass is followed, the equations analogous to Eqs. 

(36) and (37) are 

J_t  = v-v , 
J' 

(39) 

and 

(1+ ~)u  and (1+ —)w 
pi P'i 

d  ,a > 
St" (at)r,z + v-v (ho) 

Hence, the velocity of a mass particle relative to 

the moving energy element is 

7-(1+^=-oJ7 

Therefore, to express mass conservation, we write 

d 

M(t)'dV 
(t) 

T v dS , (35) 

To return to Eq. (35), we first rewrite is as 

P - £r J"   pdV = f (vj v)dV 
dt v-(t)     v(t)  * 

(41) 

We then transform Eq. (4l) to Lagrangian energy 

coordinates, 

(!=■)„   r pj-dv = r (vf v)j'dv at'§,Ti ^ *"    o    ^   i),   '     o C*2) 



because dv(r,z) = J'dV (§,TI) = J'd?dr|. The bar over 

V-P/A v reminds us that this operator is to be trans- 

formed to (?,r|) coordinates. We now can take the 

operator, (d/dt).  on the left-hand side under the 

integral, 

J<Dl')t«0-J(7.£v)j.Wo (*3) 

,3_x    d_ 
w?,^" dt ' 

r  rD*+(1+ ^r)v-v0 + pv-(l+ £-)v-V- 
v(t)

L t P* °* 
£_)v-v-| vldv =0. (1+8) 

Because the second and third terms can be combined 

as 

V-D(l+ ^T)V = V.pv + V-- 7 , (*9) 

J(pJ")tdVo= r [(Pu*'1^ + (Pw*_1)2 

f(Pu*"1)]l,dVo (kk) 

In the integrand on the left-hand side of Eq. (^0, 

we substitute from Eq. (27), 

PJ' = oo *o *  , (27a) 

and carry out the transformations indicated on the 

right-hand side with Eqs. (11) and (12), 

r «.„♦„<♦-Vo =! {[\i»*-\ - ^-\ 
o o 

+ r^Pw*"1)^ - rTi(Pw*'
1)5](f)

a+ f Pu*"1 J'}dVo . C+5) 

Because our volume element, dV , is arbitrary, the 

integrands in Eq. (^5) may be equated, and we recog- 

nize that we have Eq. (32), after elimination of J' 

in the last term with Eq. (27a). 

Finally, we can make one other check; we can 

go from Eq. (^3) back to the fixed Eulerian frame 

with the help of Eqs. (36) through (38) to see wheth- 

er we get Eq. (1). We first differentiate the inte- 

grand on the left-hand side of Eq. (^3), 

we see that we are left with Eq. (l). 

The above arguments of plausibility are easily 

extended to the two momentum equations, Eqs. (33) 

and (3^). For the r momentum, the equation of con- 

servation is 

ft L   °udv =-$ 4^1+ 2^)7]-as - $ p(ds)r, (so) 
v(t) 

where the first integral on the right-hsnd side is 

the r momentum flux into the energy element, and the 

second integral is the net force in the r-direction. 

Transforming to volume integrals on the right-hand 

side, we have 

%r  f  oudV = f  v-£H v dV - f  P dV .  (51) 
dt v(t)      v(t)  *      JV(t) r 

Again, transforming to Lagrangian energy coordinates, 

we have 

| (ouj')tdvo = r [(PuS_1)r + (Puw*-
1) 

+ ^ PuV
1 - P 

r   '     r >'dVo 
(52) 

J(0tJ-+pJ-t)dvo=|(^p)j'dvo , (W) 

and eliminate J' using Eq. (36), 

I  [Pt+pV-(1+ ^'dVo = I  (V-F)J'dVo •  ^ 

We now transform to the fixed Eulerian frame, remem- 

bering that for p , 

Eliminating J' through Eq. (27a) in the integrand 

on the left-hand side and in the third term on the 

right-hand side and carrying out the indicated trans- 

formation using Eqs. (11) and (12) on the right-hand 

side, we have 

r p '!t (U|r_1) dV  =  r { [z   (PU2,!,"1) - zJPuV1) 

+ r (Puw|T )  - r (Puw.f )fr](f)
a 

+ SL. Pu2*-2 - [z P.-zpP ](|)a}dV 

(53) 



Because dV is arbitrary, Eq. (53) is Eq. (33). 

To see if Eq. (52) yields Eq. (3) when trans- 

formed back to a fixed Eulerian frame, we first dif- 

ferentiate the integrand on the left-hand side, 

JUpuV'.puJ^dV^lv^vJdV0-! Si vJdV°-| Pr JdV°  .       (5^) 

Substituting Eqs.   (36)  through (38) and transforming 

to (r,z,t)  coordinates, we have 

{(t)[(DU)t + U+ ^'VPU + PUV'(1+ ^"^ 

V(t) 

Pu -» V»=— v dV 
if I (t) 

Pr dV (55) 

The second and third terms in the integrand on the 

left-hand side may be combined as 

v-ou(l+ —)v ■■ 
oilr 

- Pu -• 
V»0UV  +   V«—-  V   . 

Hence, Eq. (55) becomes 

f  [(ou) + V-Du7]dV =-f  F dV , 
V(t) ■L (t)r 

(56) 

which is Eq. (3) for arbitrary dV. The argument 

for Eq. (3^), the z-momentum equation, follows iden- 

tically to the above argument for the r momentum. 

Thus, Eqs. (32) through (31*-) are the fundamental 

differential equations to be solved in order to fol- 

low energy elements. The i[i  terms should be elim- 

inated in finite differencing because there will be 

cells with no total energy in them. Some simplifi- 

cation can be achieved by subtracting from each mo- 

mentum equation the corresponding speed times Eq.(32). 

Taking Eq. (33) and subtracting from it u times Eq. 

(32), we have 

or, 

Wt =   (|)a[Pw(r.Uri-V§)+Pu( y?-^ 

- *(z P--z.P )1 . (57) 
T|    b       b   T|   J 

Similarly,  subtracting w times Eq.  (32)  from Eq.   (3M, 

we have 

poVt= (FN^vvV + ^ w^V 

Finally, we can eliminate J;  in Eq. (32) by carrying 

out the differentiations and multiplying through by 
2 

(i . The resulting equation is, 

'o*o(V g)= -(f)B{*['?<^W
P,,)5+8T,(?u)5"'5(Pu)J 

v 5 -n -n ;) " KV?-2?* r))'™ 

Equations (57) and (58) should be compared with 

Eqs. (25) and (26), their analogues in the conven- 

tional Lagrangian formulation; similarly, Eq. (59) 

should be compared with Eq. (21*-). Certainly the 

equations in Lagrangian energy coordinates are more 

complicated and their computations will require more 

machine time. When differenced, each acceleration 

equation will have three times as many factors as 

its conventional Lagrangian analogue.  Because we 

are following energy cells, it would seem reasonable 

when differencing these equations to consider i>  as 

a cell-centered variable; hence, we ascribe a value 

for u and w at the energy cell center by averaging 

the values at the four corners. Further, because 

all the equations involve velocity gradients, it 

would make additional sense to have cell-centered 

velocities. If one examines some of the more popu- 

lar methods of finite differencing the conventional 

formulas and extends these methods to Eqs. (57) 

through (59), he will note that the mass accelerations, 

V-.,  w , of a vertex point in the energy mesh depend 
t  t 
through t|r on information within the four surrounding 

Lagrangian energy cells as well as at each corner of 

these cells. To illustrate, we give the explicit 

contribution to the r acceleration of cells whose 

midpoints are 1 and k  in the following figure. 

That is, we difference Eq. (57) by assuming the ac- 

celeration in the r-direction of point 0 to be made 

up of four parts contributed by pairs of cells, 1 

and k,  2 and 3, 1 and 2, and k  and 3- The contri- 

butions by cells 1 and k  and 2 and 3 are averaged, 

as are the contributions by cells 1 and 2 and h-  and 



2 
• 

6 

5    1 
• 

8 

• 
3 

• 
7   4 

3 (see Ref.  2, p.  18).    The result is 

{(Pv)8[(r1-r1^)(ud-uo)-(rd-ro)(u1-u4)] (?P.)a 

v^ 
(Pu)8[(zd-zo)(u1-uif)-(z1-z4(ud-uo)] 

t8[(zd-zo)(P1-PJt)-(z1-z^)(Pd-Po)]} 

<^>B 6'     . + <j£... + <_!£ 
E2+E3 El+E2 E3+El. 

where ?g = z(rd+rQ) or K^+r^) and Ei = (oo*0VQ)i 

where V is the volume at t = 0 for cell i. In con- 
o 

trast, the same process for Eq. (25) yields 

(r«)C 

<ymv [(VV(Vzc>(pd-po>(zrz4>] 

plus three similar terms, where m. = (oV).<    We 

have assumed that all dependent variables are known 

in some average way at all the lettered and numbered 

points in the figure. In practice, this could be 

achieved for points a, b, c, d by getting information 

from cells surrounding those depicted, or such terms 

could be ignored. 

Interfaces between different materials will pose 

an additional complication here, because we will have 

to know them in order to choose the appropriate equa- 

tion of state; i.e., in an energy cell that overlaps 

two or more mass cells, there will be contributions 

to the cell-centered pressure, density, and specific 

total energy from each of the mass constituents. 

Mass interfaces can be found, however, because ut, 

w are the mass accelerations of a vertex point in 

the energy mesh. We would have to solve two addi- 

tional equations, 

r' rtt 
ut Md ztt = wt 

for instance, to follow mass points and then have to 

test r and z against these values to find the loca- 

tion of the energy points relative to the mass points. 

Certainly, it would be prudent to first try this 

method on a single-material problem. 

Some remarks on the order of solving these 

equations are warranted, because this order demon- 

strates an additional difficulty not encountered in 

the conventional Lagrangian formulation. A proposed 

order of solution, assuming that all dependent vari- 

ables except u and w are known at n, and that u and 

w are known at n - jjj, is: 

1. Solve Eq. (59) for 

2. Solve Eq. (57) for u 

3. Solve Eq. (58) for w1 

.n+1 

n+| 

From these three equations, we can get 

k. 

5. 

6. 

n+z i,,n+l , n.   , 2L 2»n+| M      +' ) - (u +w )   . 

Solve p* = 
po t0 

(J')V+1 

Assuming a Mie-Grüneisen equation of state, 

solve for, 

P*= fx(o*) + f2(o*)e
n+l . 

7. r*-r*=(Atr<l+-^y
+*, 

j. z*-z«=(Atr<i+-i^->^, ^±+ -D&? 

where 

(At)n^= tn+1 - tn 

From r*, z* we now find a new value for J' to 

substitute into Eq. (5) and iterate on Eqs. (5) 

through (8) until consistency is attained between 
n+1  n+1 

J', r*, z*. Call the final values r  , z  , 



n+i n+h 
0  , n  . Finally solve for and the inverse, 

pn+1 = pn + ?Pn+i,   on+1 = on + 20
n+i . 

Thus, all quantities are advanced to n + 1 except u 

and w which are advanced to n + 3j. 

Comment from any reader who has used this method 

in a two-dimensional code is invited. 
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APPENDIX A. DERIVATION OF EQS. (11), (12), and (13) 

Consider the transformation from (r,z,t) to 

(L'Hjf ) and the inverse, 

r = r(?,n,t') 

z = z(5,n,t') 

t = t(o,o,f) 

5 = ?(r,z,t) 

T) = Ti(r,z,t) 

t' = t'(0,0,t) , 

such that t = t1. We retain the prime on t associated 

with the ?, n, t' set of independent variables for 

convenience. The operators of partial differentiation 
are related by 
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We think of the coefficients in the above equations, 

"r' ^r' \'  *z' \'  and ^t' as unctions of r, z, t, 
so we must find the transform of these functions in 

order to get the operators on the right-hand side as 

functions of our new independent variables §, r\,  t. 

To accomplish this, we consider how the differentials 

transform. 

(A-2) 

(A-5) 

0    0    1 

Now we can invert Eq. (A-2) symbolically. 

d§  \ ... / dr\ 
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where a.. is the matrix in Eq. (A-2) and la. . I is 

the determinant of a... Explicitly, Eq. (A-h)  is 
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v0    0  r.z -r z. / \ dt, 
5 T]  Tl ?' 

Equations (A-3) and (A-5) demand that the correspond- 

ing elements in their respective matrices be equal. 

In addition, we see that 

'aijl * J 

in our previous notation. Hence, 

?r = J'\>      \ -  -*\>      ?t = J_1(Vt-rtzr) 

nr = -J" 8?, nz = J" r§,   ^''-J'V.VV^ 

(A-6) 

Substituting Eqs. (A-6) into Eqs. (A-l) we have Eqs. 

(11), (12), and (13) in the body of this report. 

APPENDIX B. DERIVATION OF EQS. (20, (21) and (22) 

Applying Eqs. (11), (12), and (13) to Eq. (6) 

.yields 

(o<|»)tJ+(r z -r z: Kp*) +(r Z -r Z )(oi)-+aJ(rv|'+P)- 

+z  [(ot|f+P)u]  -zp[(n,j,+p)u] +r.[(o*+P)w]  -r  [(o|+P)w].=  0. 

(B-l) 

Into Eq. (B-l), substitute 

(p*)tJ = («t
J)t-p'Kr?V

r?tzn-rnz?t-
rntz?) -  (B"2) 



and then collect terms in r_, r , z , z_. The result 

(o*J)t+aJ(0i!ftP)j = r§{o(|(Z +(o*) zt-[(oi|(+P)w] ] 

- r {p*z?t+(p^)?zt-[(oi|r+P)w]?]- 

+ z {o«rFt+(oilr)?rt-[(pi|/+P)u].| 

" z?{D*V(D*)Tirt"I(0*+P)ulT|} ' 
(B-3) 

which is Eq.   (20). 

Repeating this procedure on Eq.  (7), 
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(ou)tJ+(rtz?-r§zt)(pu)Ti+(rTizt-rtZTi)(Du)?+aJ M- 

+z (Du2+P)  -zF(pu2+P) +r.(puw)   -r (puw)P =  0;   (B-k) 

(pu)tJ = (puj)t - ou Jt ; (B-5) 

u2 r 1 (ouj)t4oJ 2±r= rgLpuz^+CrjuJ^-djuwjJ 

-rr,[puzSt+( pu)?V( puw)J+Zn [pur?t+( pu)ft 

-(DU
2
+P)J 

-Z.[DurTit+(ou)rirt-(pu2
+P)J , (B-6) 

which is Eq.   (21). 

Finally, repeating this procedure on Eq. (8), 

(ow)tJ+(rtz?-r§zt)(0w)Ti+(rTiZt-rtzr))(pw)?+aJ £Ei 

+z (pwu) -z.(owu) +r.(pw2+p) -r (pw2+p) = 0 ;  (B-7) 

(ow)tJ = (pwj)t - pwJt ; (B-8) 

(pwj)t+aj £2. r?[pwzTit+(Dw)T)zt-(pw
2
+P)J 

■rr,[pwz?t+( pw)ft-( o^^J^nt^^^ pwVt 

-  (pwu)?J 

"   Z?[0W'T,t+(pW)T1
rt_(pWU)J   ' (B"9) 

which is Eq.   (22). 

APPENDIX C.    DERIVATION OF EQS.   (33)  AND  (5^) 

With Eq.  (27), the left-hand side of Eq.  (21) 

becomes 
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or 
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^ <S>1>t - T ""*V»>r] • <C-3) 

Then, with Eqs.   (30)  and (31), Eq.   (21)   is 

2 
P *  (5)* -Ir"1^ -r1« u - a*"1 —1 oYovr' L t t roJ 

=  r_(Pwui!r     )     - r (Pwuilr     ), 

+ ZTI(PU
2

.|,"
1
-P); - z^PuV1-?)^  , (C-h) ^ ^ 

which is Eq.   (33). 

Repeating the above procedure on Eq.   (22),  the 

left-hand side is 

°!°(I)0 w+ - o * [>(5)a -^ + -|( ?)a> 
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(C-5) 

(C-6) K"2)  \v4.  w - a(r -u)-    . vr L t       * v  t    'rj 

Then,  with Eqs.   (30)  and (31), Eq.   (22)  is 

po*o<!>a »-^V-«*'1 ^)=  '5<»*"H 

-r (Pw2*"1-?). + z  (Puwlr"1).,  - z  (Puwii,"1)     ,     (C-7) 

which is Eq.   (3^). 

APPENDIX D. DERIVATION OF EQS. (36) AND (37) FROM 

EQS. (30) AND (31) 

By definition, 
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Differentiating Eq. (D-2) with respect to t, 
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(D-3) 

Into Eq. (D-3) we now substitute Eqs. (30) and (31), 

J;= t(Mr + f0u + (0w)z]j' , (D-ll) 

which is Eq. (36). 

For Eq. (37), we first rewrite Eq. (13) in the 

body of report in the form, using Eqs. (11) and (12), 

,Zr\ fiz\ (2-)        ,   IS-.) .  (SL) (0_)   . (°±\   (2_) v3t;r,z  WSn Kht'*,r]  var;z,t  v3V?,r, V;r,t 

(D-12) 

1+ y«,   z = (1+ £r)v , 
n'l        t       O'J 

and for convenience let 1 + —- = 0. Then, 
p'li 

K - <|>a 
(0u)„ (0u) 

+ (^)a 
(0w)ff (0w) 

^t';,n " St;r,z vat^,r, v3r;z,t vat/?,Tfaz;r,t ' 

(D-13) 

Then, substituting Eqs. (30) and (31) into the above, 

we have 

+ a(4) 
r,a-l <ZJu (D-4) 

Now consider 0u and 0w as functions of r and z; then, 

by the chain rule, 

&>,..= ft =4>r.z+<1+^>  ^ vat'?,T|  dt  ^t'r,z 

which is Eq. (37). 

(0u)_ = r_(0u) + z.(0u)  ; 

(jZSu) = r (0u) + z (0u)  ; 

(0w)? = r;(0w)r + z?(0w)z I 

(0w) = r (0w) + z (GJw) 
tl   V ^ 'r   n^ 'z 

(D-5) 

(D-6) 

(D-7) 

(D-8) 

Substituting the above relations into Eq. (D-^), and 

in the last term substituting 

J=J'/(f)a; (D-9) 

we have 

Ji=(f)a (0u)r z- z 
§    Tl 
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